

Ref: 0259805001-32008

November 9, 2005

Mr. Floyd Wiggins Wiggins Enterprises, Inc. 1370 Airport Boulevard Santa Rosa, CA 95403

Re: Quarterly Groundwater Monitoring and Sampling Report – Third Quarter 2005, Wiggins Property, 3454 Santa Rosa Avenue, Santa Rosa, California, SCDHS-EHD Site # 00001849, NCRWQCB Site # 1TSR007

Dear Mr. Wiggins:

This report presents Winzler & Kelly Consulting Engineers' (Winzler & Kelly's) results of the third quarter groundwater monitoring and sampling activities performed on August 9, 2005, at 3454 Santa Rosa Avenue (site), Santa Rosa, California (Figures 1 and 2). Winzler & Kelly performed the work in accordance with the April 18, 2005 letter from the Sonoma County Department of Health Services, Environmental Health Division (SCDHS-EHD), which requested quarterly monitoring and sampling of monitoring wells MW-5 through MW-9, MW-11, and MW-12, as well as sampling of domestic wells located in the vicinity of the site. This report also provides a brief update on the current site remedial activities.

GROUNDWATER MONITORING AND SAMPLING ACTIVITIES

The Site-Specific Sampling Procedures, provided in Appendix A, describe in detail all of the monitoring and sampling activities that were performed at the site on August 9, 2005. A brief summary of these activities is also provided below.

Personnel Present: Winzler & Kelly's technicians, Pon Xayasaeng and Brian

Bacciarini, performed the groundwater monitoring and sampling

activities.

Free-Product Monitoring: Prior to sampling activities, monitoring well MW-10 was

evaluated for the presence of free product (petroleum

hydrocarbons) using an oil/water interface probe. Additionally, a clear plastic bailer was used to visually confirm the presence of

free product.

Depth-to-Water: An electronic water level meter was used to measure the depth-to-

groundwater (DTW) in each monitoring well while the ozone system was operating. DTW was measured in each well after

> allowing the groundwater to equilibrate to atmospheric pressure for approximately 30 minutes. An oil/water interface probe was used to measure DTW in monitoring well MW-10. DTW was measured to be 7.31 feet below ground surface (bgs). The oil/water interface

probe did not detect free product in MW-10.

Following DTW measurements, a calibrated dissolved oxygen Dissolved Oxygen:

> (DO) meter was used to measure the concentrations of DO in monitoring wells MW-5 through MW-9, MW-11, and MW-12.

Purging: An electronic 12-volt submersible pump was used to purge each of

the monitoring wells sampled until the indicator parameters of pH,

conductivity, and temperature had stabilized.

Domestic wells were purged by running the tap closest to the well

system's pressure tank until the well pump switched on.

Monitoring Well Sampling: Groundwater samples were collected from monitoring wells MW-5

and MW-8 through MW-12. New disposable bailers were used to collect and transfer the groundwater samples from each monitoring well into the appropriate, laboratory-supplied, certified clean

sample containers.

Prior to the groundwater sampling from domestic wells, well Domestic Well Sampling:

> owners were notified of the sampling event. Groundwater samples were collected from the domestic wells located at 3415 (DW-3415), 3450 (DW-3450), 3455 (DW-3455), and 3521 (DW-3521)

Santa Rosa Avenue.

Chemical Analysis: Analytical Sciences Laboratory (Analytical Sciences) of Petaluma,

California (a California-certified laboratory) analyzed each of the groundwater samples collected from the monitoring wells for total petroleum hydrocarbons as gasoline (TPH-G), as diesel (TPH-D), and as motor oil (TPH-MO) by EPA Method 8015M, and for benzene, toluene, ethyl benzene, and total xylenes (BTEX), acetone, and oxygenated fuel additives by EPA Method 8260B.

As part of the ozone remediation monitoring, groundwater samples were analyzed for hexavalent chromium (Cr+6) by EPA Method 7196A, for bromate (BrO₃⁻¹) and bromide (Br⁻¹) by EPA Method 300 (IC), and for molybdenum (Mo), selenium (Se), and vanadium

(V) by EPA Method 6010 and 200.9.

GROUNDWATER MONITORING AND SAMPLING RESULTS - AUGUST 9, 2005

The groundwater elevation data and the direction and gradient of groundwater flow at the site are summarized in Tables 1 and 2, respectively. A groundwater contour map, provided as Figure 3, illustrates the groundwater elevation contours and flow direction at the site on August 9, 2005. As Figure 3 shows, the groundwater flow direction at the site was toward the southwest at an approximate gradient of 0.01 ft/ft.

During purging activities, the parameters of pH, conductivity, temperature, and oxidation-reduction potential were monitored in the groundwater extracted from the wells. A summary of these indicator parameters is provided in Table 3. In addition to monitoring the indicator parameters, MW-10 was monitored for the presence of free product. The previously installed hydrocarbon adsorbing, hydrophobic sock was removed and weighed. Approximately six ounces of absorbed free product was measured from the sock. An oil/water interface probe was then used to measure free product in MW-10. Free product was not detected using the oil/water interface probe. A measurable quantity of free product was not detected in any of the other monitoring wells that were sampled.

The laboratory analysis of the groundwater samples collected from monitoring wells MW-8, MW-9, MW-11, MW-12, and the domestic wells did not quantify any petroleum-related constituents above the laboratory's reportable detection limits (RDLs). Only the groundwater samples collected from monitoring wells MW-5 and MW-10 contained petroleum-related constituents above the laboratory's RDLs.

The analytical results of the groundwater samples are summarized in Table 4. Figure 4 depicts the concentrations of TPH-G, benzene, and methyl-tert butyl ether (MTBE) in the groundwater samples collected from the monitoring wells on August 9, 2005.

Additionally, groundwater samples collected from the monitoring wells MW-5 and MW-8 through MW-12 were analyzed for ozone oxidation/degradation by-product related constituents (Cr⁺⁶, BrO₃⁻¹, Mo, Se, and V). Analytical results did not quantify any of these constituents above the laboratory's RDLs. Table 5 presents the analytical results of the ozone sparging parameters.

Acetone was not detected in any of the groundwater samples. Br⁻¹ was detected in all the wells sampled. Br⁻¹ (a reduced form) is commonly found in groundwater, while BrO_3^{-1} is an oxidized form of Br^{-1} that can be found in association with the ozonation process. Ozone is not expected to begin significant oxidation of Br^{-1} until oxidation of petroleum hydrocarbons is substantially completed. The oxidation of Br^{-1} is said to be insignificant as long as oxidizable petroleum hydrocarbon concentrations are above 500 μ g/L (Source: Joan Brackin of T.A.O. Technologies, Inc.).

The laboratory QA/QC included the use of method blanks to exclude false-positive analyses and the use of laboratory control samples to evaluate the percentage recovery of known analyte

spikes. The recovery percentages for all of the sample analytes were within acceptable ranges. The complete laboratory reports, QA/QC data, and the chain-of-custody form are included in Appendix B.

STATUS OF REMEDIAL MEASURES

On June 2 and 3, 2005, the ozone system unit was installed and started-up. An October 10, 2005 *Ozone Remedial System Installation and Start-up Report* was submitted to the client and SCDHS-EHD. Sparge points SP-1 through SP-6, SP-8, and SP-10 are currently in operation with the ozone system injection rate set at 1.2 pounds of ozone per day for the system. Each sparge point is receiving 0.15 pounds of ozone per day.

As of October 6, 2005, the ozone system has been operating as designed for approximately 123 days. A summary as of October 6, 2005, of the approximate mass of ozone injected into each sparge point is provided below.

Reagent	Injection Totals per Sparge Point	Operation Dates						
Ozone	18.5 pounds	6/7/05 through 7/6/05* and 7/8/05 through 10/6/05						
* Note: Ozone system was off from 7/6/05 to 7/8/05 due to high pressure alarm.								

A summary of the system operational hours is provided in Appendix C. A full summary and evaluation of the ozone system and operation and maintenance data will be provided in the annual report (November 2005 sampling event).

GEOTRACKER DATA ENTRY

As required by Assembly Bill AB2886, Winzler & Kelly has submitted the second quarter 2005 monitoring report, the analytical EDF reports from the ozone system installation, the analytical EDF reports and the groundwater well measurement file for the August 9, 2005 monitoring event to the GeoTracker database. Upload verification forms are included in Appendix D. Winzler & Kelly will submit this report to the GeoTracker database upon completion.

RECOMMENDATIONS

Winzler & Kelly recommends the continuation of quarterly groundwater monitoring and sampling at the site. As discussed in the October 10, 2005 *Ozone Remedial System Installation and Start-up Report*, the sampling schedule for each of the monitoring and domestic well at the site is summarized below.

				Analysis		
Well ID	EPA 8015M	EPA 8260B	EPA 418.1M	Acetone, Cr ⁺⁶ , Mo, Se, V	Br ⁻¹	BrO ₃ -1
MW-5	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly, then monthly if TPH-G ≤500µg/L	Quarterly, then monthly if TPH-G ≤500 μg/L
MW-6	Semi- Annually	Semi- Annually	Semi- Annually	Not Analyzed	Not Analyzed	Not Analyzed
MW-7	Semi- Annually	Semi- Annually	Semi- Annually	Not Analyzed	Not Analyzed	Not Analyzed
MW-8	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly
MW-9	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly
MW-10	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly, then monthly if TPH-G ≤500µg/L	Quarterly, then monthly if TPH-G ≤500 μg/L
MW-11	Quarterly	Quarterly	Quarterly	Annual	Annual	Annual
MW-12	Quarterly	Quarterly	Quarterly	Annual	Annual	Annual
DW-3415	Quarterly	Quarterly	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
DW-3450	Quarterly	Quarterly	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
DW-3455	Quarterly	Quarterly	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
DW-3521	Quarterly	Quarterly	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

The next monitoring and sampling event is schedule for November 2005. Should you have any questions or comments regarding this project, please contact David Vossler, Project Manager, at (707) 523-1010.

No. 2132

CERTIFIED

ENGINEERING

Sincerely,

WINZLER & KELLY

Pon Xayasaeng

Environmental Engineer

Kent O'Brien, PG, CEG Senior Project Geologist

SC.

Attachments:

Figures:

Figure 1 – Location Map

Figure 2 – Site Map

Figure 3 – Groundwater Contour Map

Figure 4 – Petroleum Hydrocarbons in Groundwater

Tables:

Table 1 – Water Level Data

Table 2 – Groundwater Gradient and Flow Direction

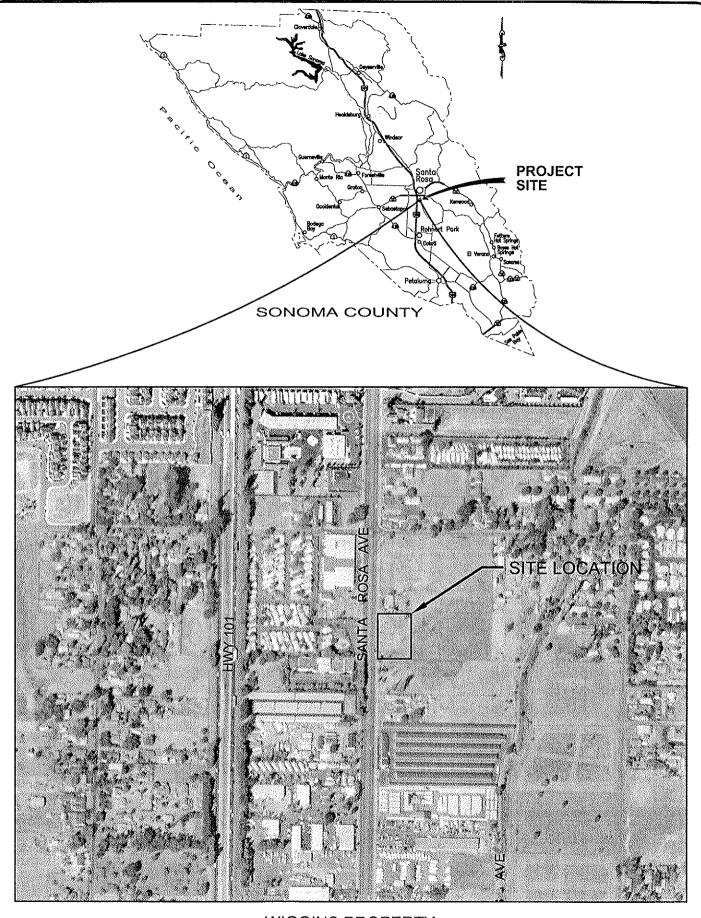
Table 3 – Indicator Parameters

Table 4 – Analytical Results of Groundwater Samples

Table 5 – Additional Groundwater Analytical Results

Appendices:

Appendix A – Site-Specific Sampling Procedures


Appendix B – Analytical Laboratory Report

Appendix C – Operation and Maintenance Data

Appendix D – GeoTracker Upload Verifications

c: Mr. Cliff Ives, Sonoma County Department of Health Services, Environmental Health Division, 475 Aviation Blvd, Suite 220, Santa Rosa, CA 95403

WIGGINS PROPERTY 3454 Santa Rosa Ave Santa Rosa, California

LOCATION MAP FIGURE 1 - 8:33am

J: \04\259801\CAD\Site Map.dwg Oct 05, 2005

- 11:36am

2005


J: \04\259801\CAD\GW-Cont.dwg Oct 03,

2005 - 11: 40am

7

Sep

J: \04\259801\CAD\GW-Box.dwg

Table 1. Water Level Data

Wiggins Property 3454 Santa Rosa Avenue, Santa Rosa, CA

Well ID	Date	Groundwater Elevation	Depth-to- Water	Top of Casing	Free Product Thickness	Screen Interval	Sand Pack Interval	Bentonite/ Grout Interval
3.5337.4.793	 	MSL	feet			fe	eet	
MW-1 TI	HROUGH MW	-4 HAVE BEEN	N ABANDONI	ED				
MW-5	04/29/04	99.64	6.25	105.89	a	5'-20'	4'-21.5'	0'-4'
W1 W - 5	07/29/04	96.64	9.25	105.89	a	3 -20	4-21.3	0-4
	03/02/05	102.34	3.55		a			
	05/02/05	102.34	4.01		a			
	8/9/2005†	98.63	7.26		a			
	8/3/2003	76.03	7.20				ļ	
MW-6	04/29/04	100.72	5.76	106.48	a	5'-20'	4'-21.5'	0'-4'
11111 0	07/29/04	97.57	8.91	100.40	a	3 20	7 21.3	0 4
	03/02/05	105.03	1.45		a			
	05/12/05	103.27	3.21		a			
	8/9/2005†	99.68	6.80		a			
	5,7,2000	, ,,,,,,	2.20				L	<u>I</u>
MW-7	04/29/04	100.55	5.73	106.28	a	5'-20'	6'-21.0'	0'-4'
	07/29/04	97.05	9.23		a			
	03/02/05	104.78	1.50		a			
	05/12/05	103.61	2.67		a			
	8/9/2005†	99.09	7.19		a			
					•			·
MW-8	04/29/04	99.81	6.53	106.34	a	5'-20'	4'-21.0'	0'-4'
	07/29/04	96.56	9.78		a			
	03/02/05	104.10	2.24		a			
	05/12/05	102.78	3.56		a			
	8/9/2005†	98.55	7.79		^a			
MW-9	04/29/04	99.67	6.07	105.74	a	5'-20'	4'-20'	0'-4'
	07/29/04	96.57	9.17		^a			
	03/02/05	102.18	3.56		^a			
	05/12/05	101.69	4.05		a			
	8/9/2005†	98.57	7.17		a			
		· · · · · · · · · · · · · · · · · · ·					T	Т
MW-10	8/15/2002*	94.56	11.30	105.86	a	5'-20'	4'-20'	0'-4'
	11/26/2002*	95.16	10.70		a			
	2/26/2003*	100.89	4.97		a			
	5/20/2003*	98.40	7.46		a			
	9/24/2003*	95.10	10.67		^a			
	04/29/04		^b		0.05			
	07/29/04		b		0.15			
	03/02/05	101.02			0.02			
	5/12/2005 °	101.92	3.94		<0.02			
	8/9/2005† ^c	98.55	7.31		a			
	1 04/5-1-1	T 00 1		10	1		1	
MW-11	04/29/04	99.59	6.11	105.70	a	5'-20'	4'-20'	0'-4'
	07/29/04	96.60	9.10		a			
	03/02/05	102.21	3.49		a			
	05/12/05	101.76	3.94		a			
	8/9/2005†	98.56	7.14		^a			

Table 1. Water Level Data

Wiggins Property

3454 Santa Rosa Avenue, Santa Rosa, CA

Well ID	Date	Groundwater Elevation	Depth-to- Water	Top of Casing	Free Product Thickness	Screen Interval	Sand Pack Interval	Bentonite/ Grout Interval
		MSL	feet	bgs		fe	et	
MW-12	04/29/04	99.57	6.26	105.83	a	5'-20'	4'-20'	0'-4'
	07/29/04	96.59	9.24]	a			
	03/02/05	102.21	3.62]	a			
	05/12/05	101.78	4.05		^a			
	8/9/2005†	98.49	7.34		a			

Abbreviations:

 $\overline{MSL} = Mean Sea Level$

bgs = Below Ground Surface

--- = Not Measured

* = Data by others, not verified by Winzler & Kelly

 \dagger = The ozone system was installed and started-up on June 2 and 3, 2005

a = Free Product Not Present

b = Free Product Present

c = Depth-to-water measured using free product interface meter

Table 2. Groundwater Gradient and Flow Direction

Wiggins Property 3454 Santa Rosa Ave, Santa Rosa, CA

Date	Groundwater Gradient (ft/ft)	Flow Direction	Wells Used for Calculating Gradient and Flow Direction
04/29/04	0.01	Southwest	MW-5, MW-6, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12
07/29/04	0.01	Southwest	MW-5, MW-6, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12
03/02/05	0.02	Southwest	MW-5, MW-6, MW-7, MW-8, MW-9, MW-11, MW-12
05/12/05	0.01	Southwest	MW-5, MW-6, MW-7, MW-8, MW-9, MW-11, MW-12
08/09/05	0.01	Southwest	MW-5, MW-6, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12

Table 3. Indicator Parameters

Wiggins Property

3454 Santa Rosa Avenue, Santa Rosa, CA

Well ID	Sample Date	pН	Temperature (°F)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)
MW-1 TH	ROUGH MW-4	HAVE BEEN	ABANDONED			1
MW-5	04/29/04	6.63	67.28	1317	-38	NM
	07/29/04	6.52	68.90	1265	-101	NM
	03/02/05	6.65	67.64	1416	-14	0.66
	05/12/05	6.65	66.20	1060	144	0.25
	8/9/05†	6.65	69.62	1336	-74	0.34
MW-6	04/29/04	6.42	67.82	778	180	NM
	07/29/04					NM
	03/02/05					0.70
	05/12/05					0.69
	8/9/05†					0.31
MW-7	04/20/04	6.67	61.70	700	215	NIM.
IVI VV - /	04/29/04	6.67	61.70	780	215	NM
	07/29/04					3.45
	05/12/05					1.37
	8/9/05†					0.97
MW-8	04/29/04	6.36	59.72	332	-51	NM
11111-0	07/29/04					NM
	03/02/05					3.05
	05/12/05	6.52	59.36	345	-34	0.22
	8/9/05†	6.59	61.70	387	-76	0.22
	6/2/03	0.57	01.70	367	-70	0.57
MW-9	04/29/04	6.81	66.20	443	186	NM
	07/29/04	6.76	66.70	721	199	NM
	03/02/05	6.76	65.30	939	285	1.69
	05/12/05	6.63	68.00	1466	-53	2.41
	8/9/05†	7.07	68.36	704	82	1.01
MW-10	04/29/04					NM
	07/29/04					NM
	03/02/05					NM
	05/12/05	6.59	67.64	973	-82	NM
	8/9/05†	6.81	70.88	894	-42	17.20
34337 11	04/20/04	6.04	67.46	967	155	NTN #
MW-11	04/29/04	6.84	67.46	867	155	NM NM
	07/29/04	6.74	67.46	759	194	NM 0.24
	03/02/05	6.81	67.46	862	233	0.34
	05/12/05	6.83	67.28	804	117	0.43
	8/9/05†	7.03	68.54	790	50	0.52
MW-12	04/29/04	6.98	69.62	849	142	NM
171 77 -12	07/29/04	6.85	68.00	881	188	NM
	03/02/05	6.90	68.00	817	229	0.76
	05/02/05	6.95	67.46	772	106	0.76
	8/9/05†	7.14	68.72	809	37	0.35

Abbreviations:

 ${}^{o}F = degrees Fahrenheit$

uS/cm = microSiemens per centimeter

ORP = Oxidation Reduction Potential

mV = milliVolts

DO = Dissolved Oxygen

mg/L = milligrams per liter

NM = Not Measured

-- = Not Sampled

 \dagger = The ozone system was installed and started-up on June 2 and 3, 2005

Table 4. Analytical Results of Groundwater Samples

Wiggins Property

3454 Santa Rosa Avenue, Santa Rosa, CA

Well ID	Date Sampled	TPH-G	TPH-D	TPH- MO	В	Т	E	X	EDB	EDC	TBA	MTBE	DIPE	ЕТВЕ	TAME	TOG
	ough MW-4	have heer	abandon	od.				ug/	L							mg/L
VI VV - I LIII	ough M W-4	Have been	i abanuon	cu.												
MW-5	04/29/04	870	57 ^a	<200	<1.0	<1.0	<1.0	<1.0	<1.0	1.7	<25	<1.0	<1.0	<1.0	<1.0	
	07/29/04	1,100	95 ^a	<200	4.8	<1.0	3.7	1.6	<1.0	1.8	<25	<1.0	<1.0	<1.0	<1.0	
	03/02/05	750	<50	<200	8.3	1.7	6.6	26	<1.0	1.2	46	<1.0	<1.0	<1.0	<1.0	<1.0 b
	05/12/05	320	54	<200	<1.0 °	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	
	8/9/05†	960	86	<200	3.7	<1.0	1.5	<1.0			<25	<1.0	<1.0	<1.0	<1.0	<1.0
	T =															
MW-6	04/29/04	<50	<50	<200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	07/29/04															
	03/02/05															
MW-7	04/29/04	<50	<50	<200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
141 44 - 7	07/29/04															
	03/02/05															
	03/02/03			I	I	I	I	I		l		I			I	I
MW-8	04/29/04	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	07/29/04															
	03/02/05															
	05/12/05	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	
	8/9/05†	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9	04/29/04	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	07/29/04	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	03/02/05	< 50	< 50	<200	<1.0	5.5	2.0	9.8	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	<1.0
	05/12/05	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	
	8/9/05†	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	<1.0
MW-10		Approxima														
	07/29/04	* *		feet of free												
	03/02/05	**	-	feet of free	<u> </u>		210	42.6		1	250	10	10	10	10	ı
	05/12/05 8/9/05†	8,800	8,000 d	<200	55	17 37	310	426			<250 <500	<10	<10 <20	<10 <20	<10 <20	150
	8/9/03	43,000	10,000	<1,000	48	3/	260	573			<300	<20	<20	<20	<20	150
MW-11	04/29/04	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
11211 11	07/29/04	<50	<50	<200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	03/02/05	<50	<50	<200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	<1.0
	05/12/05	<50	<50	<200	<1.0	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	
	8/9/05†	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	<1.0
										,				•		
MW-12	04/29/04	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	07/29/04	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	03/02/05	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	<1.0
	05/12/05	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	
	8/9/05†	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0	-		<25	<1.0	<1.0	<1.0	<1.0	<1.0
DW-3415	L	< 50			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	07/29/04	< 50			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	03/02/05	< 50			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	05/12/05	< 50			<1.0	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	
	8/9/05†	< 50			<1.0	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	
	104/47-1-		T	ı								1				ı
DW-3455	L	<50			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	07/29/04	<50			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
		< 50			<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	03/02/05 8/9/05†	<50			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	

Table 4. Analytical Results of Groundwater Samples

Wiggins Property

3454 Santa Rosa Avenue, Santa Rosa, CA

Well ID	Date Sampled	TPH-G	TPH-D	TPH- MO	В	Т	E	X	EDB	EDC	TBA	МТВЕ	DIPE	ЕТВЕ	TAME	TOG
ш	Sampicu							ug	L							mg/L
DW-3450	05/06/04	< 50			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	07/29/04	< 50			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	03/02/05	< 50			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	05/12/05	< 50			<1.0	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	
	8/9/05†	< 50			<1.0	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	
DW-3521	05/06/04	< 50			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	07/29/04	< 50			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	03/02/05	< 50			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0	
	05/12/05	< 50			<1.0	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	
	8/9/05†	< 50			<1.0	<1.0	<1.0	<1.0			<25	<1.0	<1.0	<1.0	<1.0	

Notes:

- a = The chromatogram does not exhibit a chromatographic pattern characteristic of diesel. Higher boiling point constituents of weathered gasoline are press
- b = The laboratoy's reportable detection limit was increased slightly due to limited sample volume
- $c=\mbox{The following additional compound was detected: 1,2-dichloroethane} \ (1.0\ \mbox{ug/L}$
- d = The sample chromatogram exhibits a pattern that suggests both weathered gasoline and diesel are simultaneously presented that suggests both weathered gasoline are simultaneously presented by the sample chromatogram exhibits a pattern that suggests both weathered gasoline and diesel are simultaneously presented by the sample chromatogram exhibits a pattern that suggests both weathered gasoline and diesel are simultaneously presented by the sample chromatogram exhibits a pattern that suggests both weathered gasoline and diesel are simultaneously presented by the sample chromatogram exhibits a pattern that suggests both weathered gasoline and diesel are simultaneously presented by the sample chromatogram exhibits a pattern that suggests between the sample chromatogram exhibits a pattern that suggests between the sample chromatogram exhibits a pattern than the sample chromatogram e
- --- = Not analyzed
- † = The ozone system was installed and started-up on June 2 and 3, 200:
- <50 = Analyte not detected at indicated detection limit

Abbreviations:

TPH-G = Total petroleum hydrocarbons as gasolin TPH-D = Total petroleum hydrocarbons as diese

TPH-MO = Total petroleum hydrocarbons as motor oi

B = Benzene

T = Toluene

E = Ethyl benzene

 $X = Total \ xylenes$

EDC = 1,2-dichloroethane

EDB = 1,2-dibromoethane

MTBE = Methyl tert-butyl ether

TBA = Tert-butyl alcohol

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

TAME = Tert-amyl methyl ether

TOG = Total Oil & Grease mg/L = milligrams per liter

ug/L = micrograms per liter

Analytical Methods:

418.1M = EPA Method for TOG

5030/8015M = EPA Method for TPH-G

3510/8015M = EPA Method for TPH-D & TPH-MO8260B = EPA Method for BTEX, oxygenates

and lead scavengers

Table 5. Additional Groundwater Analytical Results

Wiggins Property 3454 Santa Rosa Avenue, Santa Rosa, CA

Well ID	Sample Date	Acetone	Hexavalent Chromium (CR ⁺⁶)	Bromate (BrO ₃ ⁻¹)	Bromide (Br ⁻¹)	Molybdenum (Mo)	Selenium (Se)	Vanadium (V)
		ug/L		•	m	g/L		•
MW-5	05/12/05	<1.0	<0.005 a	<0.015 b	0.32	< 0.05	< 0.005	< 0.05
IVI VV -3	8/9/05†	<1.0	<0.005 a	<0.015 b	0.36	< 0.05	< 0.005	< 0.05
	•		•					
MW-8	05/12/05	<1.0	<0.005 a	<0.015 b	0.14	< 0.05	< 0.005	< 0.05
IVI VV -0	8/9/05†	<1.0	<0.005 a	<0.015 b	0.086	< 0.05	< 0.005	< 0.05
	•		•	•		•		•
MW-9	05/12/05	<1.0	<0.005 a	<0.015 b	0.30	< 0.05	< 0.005	< 0.05
IVI VV -9	8/9/05†	<1.0	<0.005 a	<0.015 b	0.14	< 0.05	< 0.005	< 0.05
	•							•
MW-10	05/12/05	<10	<0.005 a	<0.015 b	0.41	< 0.05	< 0.005	< 0.05
WI W - 10	8/9/05†	<20	<0.005 a	<0.015 b	0.56	< 0.05	< 0.005	< 0.05
	•							•
MW-11	05/12/05	<1.0	<0.005 a	<0.015 b	0.25	< 0.05	< 0.005	< 0.05
IVI VV - I I	8/9/05†	<1.0	<0.005 a	<0.015 b	0.19	< 0.05	< 0.005	< 0.05
	•	•	•	•	•	•		•
MW-12	05/12/05	<1.0	<0.005 a	<0.015 b	0.24	< 0.05	< 0.005	< 0.05
1V1 VV -12	8/9/05†	<1.0	<0.005 a	<0.015 b	0.33	< 0.05	< 0.005	< 0.05

Notes:

- --- = Not analyzed
- a = The specific analysis for hexavalent chromium performed within 24 hours yielded a detection limit of 0.010 mg/L. Subsequent and separate analysis for total chromium using Zeeman graphite furnace (EPA 200.9) resulted in no detection of chromium at a detection limit well below 0.005 mg/L. Hexavalent chromium is not present at the level of 0.005 mg/L.
- b = The sample required a dilution due to a sample matrix interference. The dilution resulted in a slight increase in the reported detection limit.
- \dagger = The ozone system was installed and started-up on June 2 and 3, 2005.

WINZLER & KELLY CONSULTING ENGINEERS

Site-Specific Groundwater Sampling Procedures Wiggins Property 3454 Santa Rosa Avenue Santa Rosa, California August 9, 2005

1. Objective

Collect representative water level data and groundwater samples.

2. Background

Based on the analytical results of the previous sampling, field work proceeded from the monitoring wells in which the samples collected had the lowest concentrations of constituents to the wells that had the highest concentrations of constituents.

Water levels were measured to determine the direction and gradient of groundwater flow. Representative groundwater samples from the water-bearing zone were obtained using disposable polyethylene bailers following purging.

3. Personnel Required and Responsibilities

<u>Winzler & Kelly Technicians:</u> Pon Xayasaeng and Brian Bacciarini performed groundwater monitoring and sampling activities in accordance with the procedures outlined below.

4. Procedures

4a. Decontamination Procedures

- The wash and rinse buckets, the ES-60 purger pump, and the water level meter were decontaminated using alconox soap and potable water.
- The pump and water level meter were decontaminated following use in each well.
- Nitrile gloves were worn by the sampler at all times and changed after handling equipment and instruments.

4b. Calibration Procedures

- The Ultrameter was calibrated for conductivity and pH. Temperature calibration is not necessary in the Ultrameter.
- Conductivity was calibrated using KCl-7000 standard solution within its expiration date
- The calibration for pH included "zeroing" the Ultrameter with a pH 7 buffer solution followed by adjusting the gain with acid and base buffers (4.01 and 10.00).

4c. Groundwater Elevations

- All monitoring wells were opened and expandable caps removed.
- Each well was allowed to equilibrate to atmospheric pressure.
- An electronic water level meter was used to measure the depth-to-groundwater in each monitoring well.
- An oil/water interface meter and a flapper valve were used to measure the amount of free product present in monitoring well MW-10.
- The depth, time, and visual observations regarding well access, condition, security, etc., were recorded on a Water Level Data Sheet.

4d. DO Concentrations

- The membrane on the YSI Model 55 DO meter was checked for the presence of bubbles and wrinkles, neither of which was observed.
- The meter was calibrated in the field prior to collecting measurements.
- Using the calibrated YSI Model 55 DO Meter, DO concentrations were measured in each monitoring well.

4e. Purging

- The volume of standing water in each monitoring well was calculated using the diameter of the well, the measured depth-to-water and the depth-to-bottom. The volume was recorded on the Well Sampling Data Sheet for each well.
- All wells were purged using an ES-60 purger pump attached to 40-feet of plastic tubing.
- Domestic wells were purged by running the tap closest to the well and until the well pump switched on.
- During purging of monitoring wells, the parameters of conductivity, pH, temperature, and oxidation-reduction potential were monitored using the Ultrameter at each well casing interval. Visual observations of color/odor/turbidity were also monitored.
- The time, readings, and visual comments were recorded on the Well Sampling Data Sheet.
- Each monitoring well was purged a minimum of three casing volumes, or until the indicator parameters stabilized.
- Purge and decontamination water was transferred to 55-gallon drums labeled and stored on site.

4f. Groundwater Sample Collection

- Groundwater samples were collected by lowering previously unused, disposable, polyethylene, bottom-filling bailers into the well.
- When completely full, the bailer was carefully retracted from the well casing.
- The water was transferred from the bailer to the appropriate certified clean sampling containers.
- Each VOA was immediately capped. The vial was checked for air bubbles by inverting and gently tapping. If any bubbles were visible, a new vial was filled and confirmed to be free of any air bubbles.

• All samples were labeled with the following information:

Sample ID Date and Time Sample Collected

Location Sampler's Initials

Project Number

- Sample information was documented on a Chain-of-Custody form.
- All samples were placed in an ice chest chilled with ice.
- Upon completion of the sampling activities, each well was closed and secured by replacing the well cap and lock.

5. Equipment Used:

- Disposable gloves
- Potable water
- Alconox soap
- Containers to hold rinsate water
- Scrub Brushes
- Tools to open wells
- Keys to wells
- Water Level Data Form/pencil
- Well Sampling Data Sheet
- Groundwater Sampling Log form
- Water level meter
- 12-volt DC 1.5-inch electric submersible pump
- UltraMeter
- Containers to hold extracted water (as required)
- Disposable bailers (previously unused)
- Monofilament nylon line (50-lb test)
- Scissors
- Laboratory supplied sample containers (preserved, as required)
- Sample labels
- Ice chest
- Ice
- Labels/indelible marker
- Trash bags
- 55-gallon drums
- Ziploc bags
- Portable 12-V battery

Report Date: August 29, 2005

Pon Xayasaeng Winzler & Kelly Consulting Engineers 495 Tesconi Circle, Suite 9 Santa Rosa, CA 95401-4696

LABORATORY REPORT

Project Name: Wiggins Property 0259805001.32003

Lab Project Number: 5080906

This 28 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D. Laboratory Director

TPH Gasoline in Water

Lab #	Sample ID	Analysis	Result (ug/L)	RDL (ug/L)
31479	MW-8	TPH/Gasoline	ND	50

Date Received: 08/09/05 Method: EPA 5030/8015M

 Lab #
 Sample ID
 Analysis
 Result (ug/L)
 RDL (ug/L)

 31480
 MW-12
 TPH/Gasoline
 ND
 50

 Date Sampled:
 08/09/05
 Date Analyzed:
 08/11/05
 QC Batch #:
 5745

Date Received: 08/09/05 Method: EPA 5030/8015M

 Lab #
 Sample ID
 Analysis
 Result (ug/L)
 RDL (ug/L)

 31481
 MW-11
 TPH/Gasoline
 ND
 50

 Date Sampled:
 08/09/05
 Date Analyzed:
 08/11/05
 QC Batch #: 5745

 Date Received:
 08/09/05
 Method:
 EPA 5030/8015M

 Lab #
 Sample ID
 Analysis
 Result (ug/L)
 RDL (ug/L)

 31482
 MW-9
 TPH/Gasoline
 ND
 50

 Date Sampled:
 08/09/05
 Date Analyzed:
 08/11/05
 QC Batch #:
 5745

 Date Received:
 08/09/05
 Method:
 EPA 5030/8015M

 Lab #
 Sample ID
 Analysis
 Result (ug/L)
 RDL (ug/L)

 31483
 MW-5
 TPH/Gasoline
 960
 50

 Date Sampled:
 08/09/05
 Date Analyzed:
 08/11/05
 QC Batch #:
 5745

Date Received: 08/09/05 Method: EPA 5030/8015M

Lab #	Sample ID	Analysis	Result (ug/L)	RDL (ug/L)
31484	MW-10	TPH/Gasoline	43,000	2,500
Date Sampled:	08/09/05	Date Analyzed: 08/11/05	OC F	Satch #: 57/15

 Date Sampled:
 08/09/05
 Date Analyzed:
 08/11/05
 QC Batch #:
 5745

 Date Received:
 08/09/05
 Method:
 EPA 5030/8015M

Lab # 31485	Sample ID DW-3415	Analy TPH/Gas		Result (ug/L) ND	RDL (ug/L) 50
Date Sampled: Date Received:	08/09/05 08/09/05	Date Analyzed: Method:	08/11/05 EPA 5030/8015M		Batch #: _5745

Lab # 31486	Sample ID DW-3521	Analy TPH/Gase		Result (ug/L) ND	RDL (ug/L) 50
Date Sampled: Date Received:	08/09/05 08/09/05	Date Analyzed: Method:	08/11/05 EPA 5030/8015M		Batch #: 5745

Lab # 31487	Sample ID DW-3450	Analy TPH/Gase		Result (ug/L) ND	RDL (ug/L) 50
Date Sampled: Date Received:	08/09/05 08/09/05	Date Analyzed: Method:	08/11/05 EPA 5030/8015M		atch #: <u>5745</u>

Lab # 31497	Sample ID DW-3455	Analy TPH/Gase		Result (ug/L) ND	RDL (ug/L) 50
Date Sampled: Date Received:		Date Analyzed: Method:	08/18/05 EPA 5030/8015M		atch #:5745

TPH Diesel & Motor Oil in Water

Lab # 31479	Sample ID MW-8	Analysis TPH/Diesel Motor Oil	Result (ug/L) ND ND	RDL (ug/L) 50 200
Date Sampled:	08/09/05	Date Extracted: 08/16/05 Date Analyzed: 08/16/05	QC Batch #:	5751
Date Received:	08/09/05		Method:	EPA 3510/8015M

Lab # 31480	Sample ID MW-12	Analysis TPH/Diesel Motor Oil	Result (ug/L) ND ND	RDL (ug/L) 50 200
Date Sampled: Date Received:	08/09/05 08/09/05	Date Extracted: 08/16/05 Date Analyzed: 08/16/05		5751 EPA 3510/8015M

Lab # 31481	Sample ID MW-11	Analy TPH/Diese Motor Oil		Result (ug/L) ND ND	RDL (ug/L) 50 200
Date Sampled:	08/09/05	Date Extracted: _	08/16/05	QC Batch #:	5751
Date Received:	08/09/05	Date Analyzed: _	08/16/05	Method:	EPA 3510/8015M

Lab #	Sample ID	Analysis	Result (ug/L)	RDL (ug/L)	
31482	MW-9	TPH/Diesel	ND	50	
		Motor Oil	ND	200	
Date Sampled:	08/09/05	Date Extracted: 08/16/05		5751 	
Date Received:	08/09/05	Date Analyzed: 08/16/05	Method: _	EPA 3510/8015M	

Lab # 31483	Sample ID MW-5	TPH/Dies Motor Oil		Result (ug/L) 86 ND	8DL (ug/L) 50 200
Date Sampled:	08/09/05	Date Extracted:	08/16/05	QC Batch #: Method:	5751
Date Received:	08/09/05	Date Analyzed:	08/16/05		EPA 3510/8015M

Lab # 31484	Sample ID MW-10	Analysis TPH/Diesel Motor Oil	Result (ug/L) 10,000 ND	250 1,000
Date Sampled:	08/09/05	Date Extracted: 08/16/05 Date Analyzed: 08/16/05,	QC Batch #:	5751
Date Received:	08/09/05		08/18/05 Method:	EPA 3510/8015M

Volatile Hydrocarbons by GC/MS in Water

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
31479	MW-8	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene m,p-xylene o-xylene		ND	1.0
				ND	1.0
				ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (D	OIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sui	rrogates	Result (ug/L)	% Recovery	Acceptano	ce Range (%)
dibromofluc	promethane (20)	20.3	102	70	– 130
toluene-d ₈ ((20)	20.3	102	70 – 130	
4-bromofluo	orobenzene (20)	18.3	91.5	70 – 130	
Date Sample Date Receive			1/05 8260B	QC Batch #	: <u>5741</u>

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
31480	MW-12	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ne Additives		
		tert-butyl alcohol (Ti	3A)	ND	25
		methyl tert-butyl eth	er (MTBE)	ND ND	1.0
		di-isopropyl ether (OIPE)		1.0
		ethyl tert-butyl ethe	(ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recovery	Acceptance	ce Range (%)
dibromofluo	romethane (20)	20.1	101	70	– 130
toluene-d ₈ (2	20)	20.3	102	70 – 130	
4-bromofluo	robenzene (20)	18.3	91.5	70	– 130
Date Sample		Date Analyzed: 08/1 Method: EPA	1/05 8260B	QC Batch #	: _5741

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
31481	MW-11	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (TE	3A)	ND	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (D	OIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rrogates	Result (ug/L)	% Recovery	Acceptanc	ce Range (%)
dibromofluo	promethane (20)	20.2	101	70	– 130
toluene-d ₈ (` '	20.2	101	70 – 130 70 – 130	
4-bromofluc	probenzene (20)	18.2	91.0	70 – 130	
Date Sample			1/05 8260B	QC Batch #	: 5741

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
31482	MW-9	benzene		ND	1.0
19177-3		toluene		ND	1.0
		ethyl benzene		ND ND ND ND	1.0 1.0 1.0 1.0
		m,p-xylene			
		o-xylene			
		acetone			
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (TBA) methyl tert-butyl ether (MTBE) di-isopropyl ether (DIPE) ethyl tert-butyl ether (ETBE) tert-amyl methyl ether (TAME)		ND	25
				ND	1.0
				ND	1.0
				ND	1.0
				ND	1.0
Sur	rogates	Result (ug/L)	% Recovery	Acceptance Range (%	
dibromofluoi	romethane (20)	20.3	102	70 – 130	
toluene-d ₈ (2	20)	20.3	102	70 – 130	
4-bromofluo	robenzene (20)	18.2 91.0		70 – 130	
Date Sample		Date Analyzed: Method: EPA 8260B		QC Batch #: <u>5741</u>	

Lab#	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
31483	MW-5	benzene		3.7	1.0
		toluene		ND	1.0
		ethyl benzene		1.5	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (TBA) methyl tert-butyl ether (MTBE) di-isopropyl ether (DIPE) ethyl tert-butyl ether (ETBE) tert-amyl methyl ether (TAME)		ND	25
				ND	1.0
				ND	1.0
				ND	1.0
				ND	1.0
Su	rrogates	Result (ug/L)	% Recovery	Acceptance Range (%	
dibromofluo	promethane (20)	20.0	100	70 – 130	
toluene-d ₈ ((20)	20.3	102	70 – 130	
4-bromofluo	orobenzene (20)	18.1	90.5	70 – 130	
Date Sampl Date Receiv		Date Analyzed: 08/11/05 Method: EPA 8260B		QC Batch #:5741	

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)	
31484	MW-10	benzene		48	20	
	_	toluene		37	20	
		ethyl benzene		260	20	
		m,p-xylene o-xylene acetone		540	20	
				33	20	
				ND	20	
		Oxygenated Gasol	ine Additives			
		tert-butyl alcohol (TBA)		ND	500	
		methyl tert-butyl ether (MTBE) di-isopropyl ether (DIPE) ethyl tert-butyl ether (ETBE) tert-amyl methyl ether (TAME)		ND	20	
				ND	20	
				ND	20	
				ND	20	
Surrogates		Result (ug/L)	% Recovery	Acceptan	otance Range (%)	
dibromofluo	romethane (20)	20.1	101	70 – 130		
toluene-d ₈ (20)	20.1	101	70 – 130		
4-bromofluc	probenzene (20)	18.4	92.0	70 – 130		
Date Sample Date Receive		Date Analyzed: 08/12/05 Method: EPA 8260B		QC Batch #: _5741		

Lab # Sample ID		Compound Name		Result (ug/L)	RDL (ug/L)
31485	DW-3415	benzene		ND	1.0
	toluene			ND	1.0
		ethyl benzene m,p-xylene		ND ND ND	1.0 1.0 1.0
	o-xylene acetone				
				ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (TBA) methyl tert-butyl ether (MTBE) di-isopropyl ether (DIPE) ethyl tert-butyl ether (ETBE) tert-amyl methyl ether (TAME)		ND	25
				ND	1.0
				ND	1.0
				ND	1.0
				ND	1.0
Surrogates		Result (ug/L)	% Recovery	Acceptano	ce Range (%)
dibromofluo	romethane (20)	20.2	101	70 – 130	
toluene-d ₈ (2	20)	20.4	102	70 – 130	
4-bromofluo	probenzene (20)	18.2	91.0	70 – 130	
Date Sample		Date Analyzed: 08/11/05 Method: EPA 8260B		QC Batch #:5741	

Lab #	Sample ID	ID Compound Name		Result (ug/L)	RDL (ug/L)
31486	DW-3521	benzene		ND	1.0
	211 0021	toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene	· · · · ·		1.0
		acetone		ND	1.0
		Oxygenated Gasol	ne Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (D	OIPE)	ND	1.0
		ethyl tert-butyl ether	(ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recovery	Acceptance	ce Range (%)
dibromofluo	romethane (20)	20.0	100	70	– 130
toluene-d ₈ (2		20.3	102	70 – 130	
4-bromofluc	probenzene (20)	18.2	91.0	70	– 130
Date Sample Date Receive		Date Analyzed: 08/1 Method: EPA	1/05 8260B	QC Batch #	: 5741

Lab # Sample ID Compound Name		Name	Result (ug/L)	RDL (ug/L)	
31487	DW-3450	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene m,p-xylene		ND	1.0
				ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (TE	3A)	ND	25
		methyl tert-butyl eth	er (MTBE)	ND ND	1.0
		di-isopropyl ether (D	OIPE)		1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recovery	Acceptance	ce Range (%)
dibromofluo	romethane (20)	19.9	99.5	70	– 130
toluene-d ₈ (2	20)	20.2	101	70 – 130	
4-bromofluo	robenzene (20)	18.3	91.5	70	– 130
Date Sample		Date Analyzed: 08/1 Method: EPA	1/05 8260B	QC Batch #	: _5741

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
31497	DW-3455	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (D	OIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sui	rrogates	Result (ug/L)	% Recovery	Acceptanc	e Range (%)
dibromofluc	promethane (20)	19.9	99.5	70	– 130
toluene-d ₈ (20.5	103	70 – 130	
4-bromofluo	orobenzene (20)	18.3 91.5		70	– 130
Date Sample Date Receive		Date Analyzed: 08/1 Method: EPA	1/05 8260B	QC Batch #	: _5741

Total Oil & Grease in Water

Lab # 31479	Sample ID MW-8	Analys Total Oil &		Result (mg/	<u>L)</u>	RDL (mg/L) 1.0
Date Sampled: Date Received:		Date Extracted: Date Analyzed:	08/12/05 08/12/05	QC	Batch #: Method:	

Lab # 31480	Sample ID MW-12	Analys Total Oil &		Result (mg/L) ND	RDL (mg/L) 1.0
Date Sampled:	08/09/05	Date Extracted:	08/12/05	QC Batch #: Method:	S0455
Date Received:	08/09/05	Date Analyzed:	08/12/05		EPA 418.1M

Lab #	Sample ID	<u> </u>		Result (mg/L)	RDL (mg/L)
31481	MW-11	Total Oil & Grease		ND	1.0
Date Sampled: Date Received:	08/09/05 08/09/05	Date Extracted: Date Analyzed:	08/12/05 08/12/05	QC Batch #:	S0455 EPA 418.1M

Lab # 31482	Sample ID MW-9	Total Oil &		Result (mg/L) ND	RDL (mg/L) 1.0
Date Sampled: Date Received:		Date Extracted: Date Analyzed:	08/12/05 08/12/05	QC Batch #: Method:	S0455 EPA 418.1M

Lab # 31483	Sample ID MW-5	Analysis Total Oil & G		Result (mg/L)	RDL (mg/L) 1.0
Date Sampled: Date Received:	08/09/05 08/09/05		8/12/05 8/12/05	QC Batch #: Method:	S0455 EPA 418.1M

Lab #	Sample ID	Analysis		Result	(mg/L)	RDL (mg/L)
31484	MW-10	Total Oil &	Grease	150		1.0
Date Sampled: Date Received:	08/09/05 08/09/05	Date Extracted: Date Analyzed:	08/12/05 08/12/05		QC Batch #: Method:	S0455 EPA 418.1M

Hexavalent Chromium in Water

Lab # 31479	Sample ID MW-8	Analysis Hexavalent Chromium (Cr+6)		Result (mg/L) ND (1)	RDL (mg/L) 0.005
Date Sampled: Date Received:	08/09/05 08/09/05	Date Analyzed: Method:	08/10/05 EPA 7196A	QC Batch #:	5735

1480 Lab #	Sample ID MW-12	 Analysis Hexavalent Chromium (Cr+6)		RDL (mg/L) 0.005
Date Sampled: Date Received:			QC Batch #:	5735

31481	Sample ID MW-11	Analysis Hexavalent Chromium (Cr+6)		Result (mg/L) ND (1)	RDL (mg/L) 0.005
Date Sampled: Date Received:	08/09/05 08/09/05	Date Analyzed: Method:	08/10/05 EPA 7196A	QC Batch #:	5735

(1) The specific analysis for hexavalent chromium performed within 24 hours yielded a detection limit of 0.010 mg/L. Subsequent and separate analysis for total chromium using Zeeman Graphite Furnace (EPA 200.9) resulted in no detection of chromium at a detection limit well below 0.005 mg/L. Hexavalent Chromium is not present at the level of 0.005 mg/L.

Lab #	Sample ID	Analysis Hexavalent Chromium (Cr+6)		Result (mg/L)	RDL (mg/L)
31482	MW-9			ND (1)	0.005
Date Sampled: Date Received:	08/09/05 08/09/05	Date Analyzed: Method:	08/10/05 EPA 7196A	QC Batch #:	5735

1483 Lab #	Sample ID MW-5	Analysis Hexavalent Chromium (Cr+6)		Result (mg/L) ND (1)	RDL (mg/L) 0.005
Date Sampled: Date Received:		Date Analyzed: Method:		QC Batch #:	5735

Lab #	Sample ID	Analysis		Result (mg/L)	RDL (mg/L)	
31484	MW-10	Hexavalent C	Chromium (Cr+6)	ND (1)	0.005	
Date Sampled:	08/09/05	Date Analyzed:	08/10/05	QC Batch #:	5735	
Date Received:	08/09/05	Method:	EPA 7196A	_		

⁽¹⁾ The specific analysis for hexavalent chromium performed within 24 hours yielded a detection limit of 0.010 mg/L. Subsequent and separate analysis for total chromium using Zeeman Graphite Furnace (EPA 200.9) resulted in no detection of chromium at a detection limit well below 0.005 mg/L. Hexavalent Chromium is not present at the level of 0.005 mg/L.

Bromate and Bromide in Water

Lab # 31479	Sample ID MW-8	Bromate (Bro	Analysis Bromate (BrO ₃ ⁻¹) Bromide (Br ⁻¹)		RDL (mg/L) 0.015 0.020
Date Sampled: Date Received:	08/09/05 08/09/05	, <u> </u>	08/11/05 EPA 300 (IC)	QC B	atch #: _ 5749

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)	
31480	MW-12	Bromate (BrO ₃ ⁻¹)	ND (2)	0.015	
		Bromide (Br ⁻¹)	0.33	0.020	
Date Sampled Date Received	00/00/05	Date Analyzed: 08/11/05 Methods: EPA 300 (IC)	QC Batc	h #: <u>5749</u>	

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)	
31481	MW-11	Bromate (BrO	₃ ⁻¹) ND	(2)	0.015	
		Bromide (Br ⁻¹)	0.19		0.020	
Date Sampled: Date Received:	08/09/05 08/09/05	,	3/11/05 PA 300 (IC)	QC Batch #:	5749	

⁽²⁾ The sample required a dilution due to a sample matrix interference. The dilution resulted in a slight increase in the reported detection limit.

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)	
31482	MW-9	Bromate (BrO ₃ ⁻¹)	ND (2)	0.015	
		Bromide (Br ⁻¹)	0.14	0.020	
Date Sampled: Date Received:	08/09/05 08/09/05	Date Analyzed: 08/11/05 Methods: EPA 300 (IC)	QC Batc	h #: <u>5749</u>	

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)	
31483	MW-5	Bromate (BrO ₃ ⁻¹)	ND (2)	0.015	
		Bromide (Br ⁻¹)	0.36	0.020	
Date Sample	00/00/05	Date Analyzed: 08/11/05 Methods: EPA 300 (IC)	QC Batch	n #:5749	

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)	
31484	MW-10	Bromate (BrO ₃ ⁻¹)	ND (2)	0.015	
		Bromide (Br ⁻¹)	0.56	0.020	
Date Sampled: Date Received:	00/00/05	Date Analyzed: 08/11/05 Methods: EPA 300 (IC)	QC Batc	h #: <u>5749</u>	

⁽²⁾ The sample required a dilution due to a sample matrix interference. The dilution resulted in a slight increase in the reported detection limit.

Dissolved Metals in Water

Lab # 31479	Sample ID MW-8	Analysis Vanadium (V) Selenium (Se) Molybdenum (Mo)		Result (mg. ND ND ND	<u>/L)</u>	0.050 0.005 0.005 0.050
Date Sampled: Date Received: Method:	08/09/05 08/09/05 EPA 200.9 Zeema	Date Digested: _ Date Analyzed: _ an GFF/EPA 3010/6			C Batch #:	5734, 5740

Lab#	Sample ID	Sample ID Analysis Result (mg/		RDL (mg/L)
31480	MW-12	Vanadium (V)	ND	0.050
		Selenium (Se)	ND	0.005 0.050
		Molybdenum (Mo)	ND	
Date Sampled:	08/09/05	Date Digested: 08/11/05	QC Batch	#: 5734, 5740
Date Received:	08/09/05	Date Analyzed: 08/11/05, 08/12/0	5	
Method:	EPA 200.9 Zeem	an GFF/EPA 3010/6010		

Lab #	Sample ID	Analysis		Analysis Result (mg/L)	
31481	MW-11	Vanadium (V) Selenium (Se) Molybdenum (Mo)		ND	0.050
				ND	0.005
				ND	0.050
Date Sampled:	08/09/05	Date Digested:	08/11/05	QC	Batch #: 5734, 5740
Date Received:	08/09/05	Date Analyzed:	08/11/05, 08/12/05	5	
Method:	EPA 200.9 Zeem	an GFF/EPA 3010/	6010		

Lab #	Sample ID	Anal	ysis	Result (mg/L)	RDL (mg/L)
31482	MW-9	Vanadium	า (V)	ND	0.050
		Selenium	(Se)	ND	0.005
		Molybden	ium (Mo)	ND	0.050
Date Sampled:	08/09/05	Date Digested:	08/11/05		tch #: _5734, 5740_
Date Received: Method:	08/09/05 EPA 200.9 Zeem	Date Analyzed: an GFF/EPA 3010/	08/11/05, 08/12/05 6010	<u> </u>	

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
31483	MW-5	Vanadium (V)	ND	0.050
		Selenium (Se)	ND	0.005
		Molybdenum (Mo) ND	0.050
Date Sampled:	08/09/05	Date Digested: 08/11/05	QC Batch	#: 5734, 5740
Date Received:	08/09/05	Date Analyzed: 08/11/05,	08/12/05	
Method:	EPA 200.9 Zeem	an GFF/EPA 3010/6010		

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
31484	MW-10	Vanadium (V)	ND	0.050
		Selenium (Se)	ND	0.005
		Molybdenum (Mo)	ND	0.050
Date Sampled:	08/09/05	Date Digested: 08/11/05	QC Batch #	<i>‡</i> : 5734, 5740
Date Received:	08/09/05	Date Analyzed: 08/11/05, 08/12/05	5	
Method:	EPA 200.9 Zeema	an GFF/EPA 3010/6010		

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 5745 **Lab Project #:** 5080906

Sample	Commonwel	Result
<u>ID</u>	Compound	(ug/L)
MB	TPH/Gas	ND
MB	MTBE	ND
MB	Benzene	ND
MB	Toluene	ND
MB	Ethyl Benzene	ND
MB	Xylenes	ND

	Sample		Result	Spike	%
Sample #	ID	Compound	(ug/L)	Level	Recv.
31442	CMS	TPH/Gas		NS	
	CMS	Benzene	9.60	10.0	96.0
	CMS	Toluene	9.65	10.0	96.5
	CMS	Ethyl Benzene	10.2	10.0	102
	CMS	Xylenes	30.5	30.0	102

	Sample		Result	Spike	%	
Sample #	ID	Compound	(ug/L)	Level	Recv.	RPD
31442	CMSD	TPH/Gas		NS		
	CMSD	Benzene	9.51	10.0	95.1	0.94
	CMSD	Toluene	9.83	10.0	98.3	1.8
	CMSD	Ethyl Benzene	10.2	10.0	102	0.20
	CMSD	Xylenes	30.2	30.0	101	0.99

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5751 **Lab Project #:** 5080906

Compound TPH/Diesel	Result (ug/L) ND			
Compound TPH/Diesel	Result (ug/L) 2,000	Spike Level 2,730	% Recv. 73.3	
Compound	Result (ug/L)	Spike Level	% Recv.	RPD 0.50
	TPH/Diesel Compound TPH/Diesel	Compound TPH/Diesel(ug/L)Result (ug/L)Result (ug/L)TPH/Diesel2,000Result (ug/L)Result (ug/L)	Compound (ug/L) TPH/Diesel ND Result (ug/L) Spike Level TPH/Diesel 2,000 2,730 Result (ug/L) Spike Level	Compound (ug/L) TPH/Diesel ND Result (ug/L) Spike Recv. TPH/Diesel 2,000 2,730 73.3 Result (ug/L) Spike % Level Recv. Level Recv.

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5741 **Lab Project #:** 5080906

Sample ID	Compound Name	Result (ug/L)
MB	1,1-dichloroethene	ND
MB	benzene	ND
MB	trichloroethene	ND
MB	toluene	ND
MB	chlorobenzene	ND

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.2	101	70 – 130
toluene-d ₈ (20)	20.2	101	70 – 130
4-bromofluorobenzene (20)	18.4	92.0	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.
31518	CMS	1,1-dichloroethene	18.6	25.0	74.4
	CMS	benzene	23.3	25.0	93.2
	CMS	trichloroethene	23.9	25.0	95.6
	CMS	toluene	24.6	25.0	98.4
	CMS	chlorobenzene	23.9	25.0	95.6

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.8	104	70 – 130
toluene-d ₈ (20)	21.7	109	70 – 130
4-bromofluorobenzene (20)	18.2	91.0	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.	RPD
31518	CMSD	1,1-dichloroethene	17.9	25.0	71.6	3.8
	CMSD	benzene	22.8	25.0	91.2	2.2
	CMSD	trichloroethene	23.0	25.0	92.0	3.8
	CMSD	toluene	24.1	25.0	96.4	2.1
	CMSD	chlorobenzene	23.8	25.0	95.2	0.42

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%
dibromofluoromethane (20)	20.5	103	70 – 130
toluene-d ₈ (20)	21.2	106	70 – 130
4-bromofluorobenzene (20)	18.4	92.0	70 – 130

 $\label{eq:mb} \begin{aligned} \text{MB} = \text{Method Blank}; \ \ \text{LCS} = \text{Laboratory Control Sample}; \ \ \text{CMS} = \text{Client Matrix Spike}; \ \ \text{CMSD} = \text{Client Matrix Spike} \ \ \text{Duplicate} \\ \text{NS} = \text{Not Spiked}; \ \ \text{OR} = \text{Over Calibration Range}; \ \ \text{NR} = \text{No Recovery} \end{aligned}$

QC Batch #: \$0455 **Lab Project #:** 5080906

Sample		Result
ID	Compound	(mg/L)
MB	10/30W Motor Oil	ND

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5735 **Lab Project #:** 5080906

Sample		Result	Spike	%
ID	Compound	(mg/L)	Level	Recv.
LCS	Hexavalent Chromium (Cr+6)	0.981	1.00	98.1

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5734 Lab Project #: 5080906

Sample ID	Company	Result
<u>u</u>	Compound	(ug/L)
MB	Vanadium (As)	ND
MB	Selenium (Se)	ND
MB	Molybdenum (Mo)	ND

	Sample		Result	Spike	%
Sample #	ID	Compound	(ug/L)	Level	Recv.
31441	CMS	Vanadium (As)	0.490	0.500	98.0
	CMS	Selenium (Se)	0.459	0.500	91.8
	CMS	Molybdenum (Mo)	0.449	0.500	89.8

	Sample		Result	Spike	%	
Sample #	ID	Compound	(ug/L)	Level	Recv.	RPD
31441	CMSD	Vanadium (As)	0.492	0.500	98.4	0.41
	CMSD	Selenium (Se)	0.458	0.500	91.6	0.22
	CMSD	Molybdenum (Mo)	0.461	0.500	92.2	2.6

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

CHAIN OF CUSTODY LAB PROJECT NUMBER: 5880966

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128
Fax (707) 769-8093

' [rax (101) 103	0-601	<u> </u>				_			WINZ	WINZI ED & KELLY DROJECT NAME:	(E) \	PP C II	N	1		0.00	
	73	CLIENT INFORMATION	FOR	MATIO	2						Winzi ED & KELLY DOUGGT NIMBED	. 8. KE	2			1	PK	إ	
	COMPANY NAME: WINZLER & KELLY	/INZLER &		CONSULTING ENGINEERS	TING EN	GINEERS		L										3200	\prod
					٩					TURN	TURNAROUND TIME (check one)	D TIME	(chec	k one)			GEOTI	GEOTRACKER EDF: $X Y$	z
	ADDRESS: 495 LESCONI CIRC	95 I ESCO		LE, SUITE 9	ا _ا												GLOB/	GLOBAL ID: TO6097005	53
	Ø	SANTA ROSA, CA		95401-4696	969			Σ	MOBILE LAB	 ¥		ı						Tollar disease as 1000	
	CONTACT: Man 45 Smuth	12 x 1 25	••	Ourshams:	_	W			SAME DAY)AY		•••	24 Hours	JRS				P. 1. o. T. o. o.	
	PHONE#: (707) 523-1010	707) 523-1	Ť		I				48 Hours	URS		 	72 Hours	JRS					
	FAX #: (7	FAX#: (707) 527-8679	629						5 D.	5 DAYS			NORMAL	 ¥	¥			COC OF A	
											٨	ANAL YSIS	ျွ						:
									Œε	- S4	-		MI	280	W	-	Ŀ	BPNA	
ITEM	CLIENT SAMPLE I.D.	DATE	TIME	MATRIX	# CONT.	PRESV.	TPH/GAS/BTEX S-MTDE EPA 8015M/2019	MOTOR OIL REPA 8015M EPA 8015M	VOLATILE HYDROCARBONS EPA 82608 (FUL LIS TANSONS	EPA 8260B	FUEL ADDITIVES EPA 8260M CHLORINATED SOLVENTS	EPA 8010 / EPA 826 SEMI-VOLATILE HYDROCARBONS EPA 8270	18PH / TOG SM 5520F / EPA 418.1	ESTICIDES / PCB	1817 Ja 501	HKCLINANCE BOOK BOOK	3 tomorg	COMMENTS TO STATE OF THE STATE	LAB SAMPLE #
-	mw-8	50/60/80	1145	3	S. Color	2 %	×	X		X					×	×	X	AAAA aretone 3	1479
2	MW-12		1330	ρi		_	×	ኦ		· ·					ХL	X	\mathbf{X}	th 8260B	08 hl
ဧ	mw-11		1245	_			Y	2		X					X	$\frac{}{\lambda}$	X	3	31481
4	PW-9		1355				\checkmark	X		Y					X	`` `X	X	Ast How Chance	1482
2	5-mw		5141				Q.	J.		4					×	<u>~</u>	\times	1 linite @ 254/LP	1483
9	01-MW		1430		\	>	} -	×		, ,		,			X	X	X	8 6/	1984
7	DW-3415		(50C		90 <u>)</u>	₹	×			. ×								xsx bonntes	58/1
®	DW-352		1520			\exists	5				_				\neg		-	1 my 6 10m	186
ø	DW-3450	7	630	—	>	>	7			7					\exists			- 1	1,8%
9																		ŧ.	
7																		الم الم	
									SIGNA	SIGNATURES	ار								
		, 	SAMPLED	BY:	Pon X.	Ž	الممر				(_					, 	
<u>₩</u>	RELINGUISHED BY:	\		0-	19 6/2	٠ /٣	۷.	いい	6		RE GENVED	M		RATORY:				4/05 1	5-49
∤ §	SIGNATURE			, 			1	1	`.		SIGNATURE							DATE	Time


PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

31-197 LAB SAMPLE # 630 GLOBAL ID: 706097053 TIME COOLER TEMPERATURE AVIERSE Add from whishing Missims Knpert me report Bhesel to other COMMENTS 1002084520 GEOTRACKER EDF: CHAIN OF CUSTODY PAGE 200 WINZLER & KELLY PROJECT NAME: WINZLER & KELLY PROJECT NUMBER: CAM 17 METALS I TURNAROUND TIME (check one) RECEIVED BY LABORATORY: PESTICIDES / PCB'S EPA 8081 / 8141/ 8082 24 Hours 72 Hours NORMAL DOT | H9RT Mr.814 A93 | 90523 M8 ANALYSIS SEMI-VOLATILE UTS 8270 CHLORINATED SOLVENTS SPA 8010 / EPA 8260B OXYGENATED FUEL ADDITIVES M03S8 A93 SIGNATURES 5 DAYS BTEX & OXYGENETS PRESENTED PRESENTED PRESENTED PRESENTED PRESENTED 48 Hours MOBILE LAB SAME DAY VOLATILE HYDROCARBONS ' (FULL LIST) TIME MOTOR OIL TPH DIESEL I EPA, 8015M#8040 TPH/GAS/BTEX کم COMPANY NAME: WINZLER & KELLY CONSULTING ENGINEERS PRESV. YES/NO Coults: Some , Outstions: Analytical Sciences P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093 8/3/11 CONT. SANTA ROSA, CA 95401-4696 1 ADDRESS: 495 TESCONI CIRCLE, SUITE 9 CLIENT INFORMATION MATRIX 3 SAMPLED BY: 16:07 TIME PHONE#: (707) 523-1010 FAX #: (707) 527-8679 <u>を</u> DATE SAMPLED Ö CLIENT SAMPLE I.D. 25/16-MJ CONTACT: RELINGUISMED BY HEM

10

r.

Operation and Maintenance Data

Wiggins Property 3454 Santa Rosa Avenue, Santa Rosa, Ca

	System Total		Ozone Readi	ngs		A	ir Readings	
Date	Run Time (hours)	Run Time Per Sparge Point (hours)	Injection Rate ^a (lbs O3/day)	Injection Pressure (psi)	Flow Rate (SCFM)	Run Time Per Sparge Point (psi)	Injection Pressure (psi)	Flow Rate (SCFM)
06/02/05	System Installat	tion and Test Run. O	zone supply lines v	vere pressurizo	ed using compr	essed air to check for	r leaks. Any leal	ks were
	repaired. Initial	system readings wa	s recorded.					
	1.4	1.4	1.7	19.0	0.25	2.9	30	1.0
06/07/05	System Start-up	with regulator fron	the SCDHS prese	nt. Ozone inje	ction rate initia	ally set at 0.5 lbs O3/o	day.	
	NR	NR	0.5	18.0	0.25	NR	33	1.0
06/08/05	Ozone injection	rate increased to 0.8	3 pounds per day bo	ecause no leak	s were detected	and the system had	been operating	as designed.
	118.6	NR	0.8	18.5	0.26	7.4	30	1.0
06/09/05	141.8	NR	0.8	19.0	0.26	8.8	32	1.0
6/14/2005	Performed 1st weekly groundwater sampling event for monitoring wells MW-5, MW-8 through MW-10.							
	263.3	33.3	NR	18.5	0.27	NR	31	1.0
06/23/05	Performed 2nd	weekly groundwater	sampling event for	r monitoring w	vells MW-5, M	W-8 through MW-10).	•
06/30/05	Performed 3rd weekly groundwater sampling event for monitoring wells MW-5, MW-8 through MW-10.							
07/08/05	-	_	-		_	Cleared alarm, decre g wells MW-5, MW-	_	
	784.5	98.3	0.8	17.5	0.25	NR	30	1.0
07/27/05	1242.1	160.2	0.8	16.5	0.22	80.3	31	1.0
08/09/05	Performed 3rd	quarter 2005 QM ev	ent. Increased ozon	e injection rat	e to 1.1 lbs O3/	day to optimized oxi	dation of petrol	eum related
	contaminants in	-		v		• •	-	
	1555.7	198.9	1.1	20.0	0.27	99.7	32	1.0
09/07/05	2250.4	284.7	1.2	18.5	0.25	142.6	32	1.0
09/21/05	2587.4	326.3	1.1	16.5	0.22	163.3	30	1.0
10/06/05	2947.2	370.8	1.2	16.5	0.24	185.6	32	1.0

Note:

a = Calculated using the *Ozone Generation Curve* provided by Applied Process Technology.

lbs O3/day = Pounds ozone per day

psi = Pounds square inch

SCFM = Standard cubic foot per minute

SCDHS = Sonoma County Department of Health Services

NR = Not recorded

QM= Quarterly groundwater monitoring and sampling event

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_REPORT FILE

YOUR DOCUMENT UPLOAD WAS SUCCESSFUL!

Facility Name:

John's Auto Repair (former)

Global ID:

T0609700531

Title:

Quarterly Groundwater Monitoring Report, 2nd Qtr

2005

Document Type:

Monitoring Report - Quarterly

Submittal Type:

GEO_REPORT

Submittal Date/Time: 9/9/2005 11:13:43 AM

Confirmation

8899137198

Number:

Click here to view the document.

Back to Main Menu

Logged in as WINZLER (AUTH_RP)

CONTACT SITE ADMINISTRATOR.

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 8615206599

Date/Time of Submittal: 9/9/2005 11:20:33 AM

Facility Global ID: T0609700531

Facility Name: John's Auto Repair (former)

Submittal Title: Ozone Installation, EDF Report 5061411

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 3063923895

Date/Time of Submittal: 9/9/2005 11:22:39 AM

Facility Global ID: T0609700531

Facility Name: John's Auto Repair (former)

Submittal Title: Ozone Installation, EDF Report 5062309

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 5159513950

Date/Time of Submittal: 9/9/2005 11:27:26 AM

Facility Global ID: T0609700531

Facility Name: John's Auto Repair (former)

Submittal Title: Ozone Installation, EDF Report 5063003

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 7078157603

Date/Time of Submittal: 9/9/2005 11:29:51 AM

Facility Global ID: T0609700531

Facility Name: John's Auto Repair (former)

Submittal Title: Ozone Installation, EDF Report 5070805

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title:

Well Measurement File, 3rd Qtr 2005, Wiggins

Property

Submittal Date/Time: 9/9/2005 11:33:47 AM

Confirmation

Number:

3872009098

Back to Main Menu

Logged in as WINZLER (AUTH_RP)

CONTACT SITE ADMINISTRATOR.

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 4518710613

Date/Time of Submittal: 10/10/2005 5:58:29 PM

Facility Global ID: T0609700531

Facility Name: John's Auto Repair (former)

Submittal Title: EDF Report 5080906